If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5p^2-24p-5=0
a = 5; b = -24; c = -5;
Δ = b2-4ac
Δ = -242-4·5·(-5)
Δ = 676
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{676}=26$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-24)-26}{2*5}=\frac{-2}{10} =-1/5 $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-24)+26}{2*5}=\frac{50}{10} =5 $
| 6=p+17 | | -3(4x+5)=-11 | | 3x^2-3=39 | | 1m-10=55 | | 1/6x+2/3=1/4(x-2 | | 5/6x=4/2x+4 | | 2b-14=42 | | (k+2)^2=16 | | 3(230+s)+80+110=1000 | | 14m2-67m+63=0 | | 4(x+1)-3(x-2)=8 | | 0=7x^2-31x-20 | | 5+x-3=9 | | 14m2-67m=63 | | (5y+2)(4y)=220 | | 39+6n=-3(-5n+5) | | 2x+x+1=4x-7 | | 15+1d=37 | | 14x^2-32x-30=0 | | 15+1d=19 | | 8+k=-2 | | -5-6(5b-2)=32-5b | | 14x^2-32x=30 | | 4(1.35)+3b=11.67 | | 44-1n=23 | | 0.4(x+2.4$=2.4 | | 33+1c=54 | | 200=9x | | 33+1b=60 | | 33×1b=60 | | 2.k=17.5 | | x=2/3*1/24 |