5n=n(n+5)-5

Simple and best practice solution for 5n=n(n+5)-5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5n=n(n+5)-5 equation:



5n=n(n+5)-5
We move all terms to the left:
5n-(n(n+5)-5)=0
We calculate terms in parentheses: -(n(n+5)-5), so:
n(n+5)-5
We multiply parentheses
n^2+5n-5
Back to the equation:
-(n^2+5n-5)
We get rid of parentheses
-n^2+5n-5n+5=0
We add all the numbers together, and all the variables
-1n^2+5=0
a = -1; b = 0; c = +5;
Δ = b2-4ac
Δ = 02-4·(-1)·5
Δ = 20
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{20}=\sqrt{4*5}=\sqrt{4}*\sqrt{5}=2\sqrt{5}$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{5}}{2*-1}=\frac{0-2\sqrt{5}}{-2} =-\frac{2\sqrt{5}}{-2} =-\frac{\sqrt{5}}{-1} $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{5}}{2*-1}=\frac{0+2\sqrt{5}}{-2} =\frac{2\sqrt{5}}{-2} =\frac{\sqrt{5}}{-1} $

See similar equations:

| -7x+20=6 | | x/3+2=-21 | | -2(a+2)=3(2a+1) | | 0=-8r-4r | | 15x+8=20-6x | | 2x(4+10)=15+x | | –2p–5=–11 | | 4(5x–12)–7x=5x | | (4x;35)/2=3x | | 6x-8x-24=4 | | k-7/2=-11 | | 2n/4-3=35 | | v-4/4=5/6 | | x-5/7+x+1/5+x+2/7=9 | | d/4=4.3 | | .3.2e+2.6=-23 | | -7x+41=-5(x-9) | | z+7z+8z-16z=0 | | 2×+10=4x-8 | | H+2n=3n | | 2x+5-6x-4=2+3x-9x+5 | | 2(+1)=c-7 | | 2.5xx2x= | | 2/3x+7=1/2x-2 | | .−3g+6+2g=15 | | 12-(4+n)=28 | | −10x=2(9−2x) | | 3(r+0.2)=2.2 | | 4y+(y*y)=96 | | -28r=84 | | X+(.7)x=90 | | 2(y+5)=18-12 |

Equations solver categories