If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5k+7=3/8k+24
We move all terms to the left:
5k+7-(3/8k+24)=0
Domain of the equation: 8k+24)!=0We get rid of parentheses
k∈R
5k-3/8k-24+7=0
We multiply all the terms by the denominator
5k*8k-24*8k+7*8k-3=0
Wy multiply elements
40k^2-192k+56k-3=0
We add all the numbers together, and all the variables
40k^2-136k-3=0
a = 40; b = -136; c = -3;
Δ = b2-4ac
Δ = -1362-4·40·(-3)
Δ = 18976
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{18976}=\sqrt{16*1186}=\sqrt{16}*\sqrt{1186}=4\sqrt{1186}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-136)-4\sqrt{1186}}{2*40}=\frac{136-4\sqrt{1186}}{80} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-136)+4\sqrt{1186}}{2*40}=\frac{136+4\sqrt{1186}}{80} $
| 2n^2+8n+4=0 | | (x-3)(x-3)=60 | | 30=-200+15p | | 2(4(x+3)=2(2x+20) | | 4^(2x)=0.0625 | | 55-6y^2=31 | | 19y2+15y=0 | | 125^x+5^(3x+1)=200 | | 67+x=24 | | y+40=79 | | 38-y=22 | | 49+y=67 | | 56-y=23 | | 22-y=18 | | 65-y=28 | | 2^x-4=3^2x+5 | | 2x+3x-1+x=180 | | -7+v/2=-1 | | Y-1=3y-7 | | -8(-8x-6)=2x+7 | | 15-40=5b+120 | | 13x+2=3x-4+5x-7=180 | | 15b+6=13b+8 | | 15b+6=13b | | 2y-5=-29 | | -15x+1=3x-10 | | 16+8x=5x+15 | | 3^x+1=4^x-1 | | 4^7x=15 | | 14-x/6=34 | | 8x+1/2(3x+1)=12 | | 28-3y=20 |