If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5b^2-25=0
a = 5; b = 0; c = -25;
Δ = b2-4ac
Δ = 02-4·5·(-25)
Δ = 500
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{500}=\sqrt{100*5}=\sqrt{100}*\sqrt{5}=10\sqrt{5}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-10\sqrt{5}}{2*5}=\frac{0-10\sqrt{5}}{10} =-\frac{10\sqrt{5}}{10} =-\sqrt{5} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+10\sqrt{5}}{2*5}=\frac{0+10\sqrt{5}}{10} =\frac{10\sqrt{5}}{10} =\sqrt{5} $
| 16x+5=8x=5 | | 6x-11=17/2x | | 4+k/2=-2 | | 1-4x=6x+3 | | -4k^2-8k-3=5k^2 | | w/4+w/6=5/4 | | 4(8x-26)=11 | | -x+5=-27 | | 8x+10=x-20 | | -14-27v=25+7v | | 15-3x=2/5(10x-15) | | 5x+3(x+2)=30 | | -5q+8=23 | | 2y^2+28y+26=0 | | 14x-35=27x-63 | | 3(v-4)=4(v-6) | | 8x+32=12x-4 | | 6y-9=90 | | 5=15x+65 | | 6y+9=90 | | x-42=-34 | | -2(y+8)=7y+11 | | 56x+49=30x+12 | | X-1/2x-1=1 | | 1/2x-2=-2x-4 | | 8=4(q-2)+9 | | (4y+18=6y) | | 9y-11=2(y-2) | | -0,4/x-0,5=1 | | 40x^2-9x-9=0 | | n+51=117 | | 2(w-1)=-2w+34 |