If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5a^2-45=0
a = 5; b = 0; c = -45;
Δ = b2-4ac
Δ = 02-4·5·(-45)
Δ = 900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{900}=30$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-30}{2*5}=\frac{-30}{10} =-3 $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+30}{2*5}=\frac{30}{10} =3 $
| 17x-21=-16x+27 | | (7/8)(2g+3/g+2)=2 | | 11(-x-3)=4(x-22) | | -5x+-48x=-24 | | 2=(2x-5) | | 279=133-v | | 4x^2–13=12x | | 2x+95=5x | | (2x-1)+(x+7)+(x-4)=180 | | 4x2–13=12x | | f(1.5)=50(1.5)+20 | | -8k+-4=6k+24 | | 48x-14+36x+46+90=180 | | 5=(2x-3) | | -(-4x-9)=14 | | 8+7x+2=24 | | 9x+17=6x-12 | | 60x+153=9x+51- | | .35+8x=6 | | d−–1=7 | | 4=(3x+50) | | 13x-1=34 | | 3/5q=48 | | (3x−2)−11x=−5x | | 5c–2=3c,24c= | | 3x2+6x+-105=0 | | -3(2x-6)=4x-22 | | 35+.8x=43—-7x | | -7+2x+5x=-14 | | 12x-3=3(-1+4x) | | .–34=v+42–5v | | (2x+3)+(x+2)+(2x+3)+(x+2)=46 |