5=8i(9i-9)

Simple and best practice solution for 5=8i(9i-9) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5=8i(9i-9) equation:



5=8i(9i-9)
We move all terms to the left:
5-(8i(9i-9))=0
We calculate terms in parentheses: -(8i(9i-9)), so:
8i(9i-9)
We multiply parentheses
72i^2-72i
Back to the equation:
-(72i^2-72i)
We get rid of parentheses
-72i^2+72i+5=0
a = -72; b = 72; c = +5;
Δ = b2-4ac
Δ = 722-4·(-72)·5
Δ = 6624
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$i_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$i_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{6624}=\sqrt{144*46}=\sqrt{144}*\sqrt{46}=12\sqrt{46}$
$i_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(72)-12\sqrt{46}}{2*-72}=\frac{-72-12\sqrt{46}}{-144} $
$i_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(72)+12\sqrt{46}}{2*-72}=\frac{-72+12\sqrt{46}}{-144} $

See similar equations:

| 3x+22=-2x+37 | | 5(n-1)=2n-4 | | 4x^2+28=32x | | 4(-4x+1)-2x+4=-162 | | 4x^2+28=32 | | -2x+19=31 | | 10x+21=3x+7 | | 10x-7x=x+8 | | 2x+4=-3x+54 | | -7x-1=-3x+27 | | 5k^2+6k-16=0 | | 6x2+7x-90=0 | | -2x-10=-3x-6 | | 2(x+5)=(x+40) | | 21-x=6+2x | | 8x-9=6x-11 | | -6x+14=-4x+12 | | -9x+20=-5x+32 | | 5x2-x+1=0 | | 6n+6=3(n+5) | | -5x-8=-4x-9 | | 4/7=16/x | | 7x-51=5 | | 4y^2-800=0 | | 50+x+x/4=180 | | 5x2+6x=0 | | -x+17=22 | | -4x+13=-2x+9 | | x+4=-4x-26 | | -4x+21=-5x+22 | | 8x-40=20-4 | | x=4,3+3,7 |

Equations solver categories