If it's not what You are looking for type in the equation solver your own equation and let us solve it.
594=(30-2x)(30+3x)
We move all terms to the left:
594-((30-2x)(30+3x))=0
We add all the numbers together, and all the variables
-((-2x+30)(3x+30))+594=0
We multiply parentheses ..
-((-6x^2-60x+90x+900))+594=0
We calculate terms in parentheses: -((-6x^2-60x+90x+900)), so:We get rid of parentheses
(-6x^2-60x+90x+900)
We get rid of parentheses
-6x^2-60x+90x+900
We add all the numbers together, and all the variables
-6x^2+30x+900
Back to the equation:
-(-6x^2+30x+900)
6x^2-30x-900+594=0
We add all the numbers together, and all the variables
6x^2-30x-306=0
a = 6; b = -30; c = -306;
Δ = b2-4ac
Δ = -302-4·6·(-306)
Δ = 8244
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{8244}=\sqrt{36*229}=\sqrt{36}*\sqrt{229}=6\sqrt{229}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-30)-6\sqrt{229}}{2*6}=\frac{30-6\sqrt{229}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-30)+6\sqrt{229}}{2*6}=\frac{30+6\sqrt{229}}{12} $
| -2(-7+25)=7(-9b+3) | | 7(3z+12)=21z | | -12a+6-3a21=72 | | 20^2=2a(50) | | 2x+15+x-5=180 | | 5w+4w=35 | | 8-3k=3k+3k | | 2u-5=2+u | | 2/3x+7=-0.2x+3 | | x-15=|-5| | | D=5t2 | | 5t-3(2t-5)=7 | | 6x-2=2x+8-2 | | n-2=50 | | 4(5n+9)=-2n+8 | | 2/3x+7=(-1/5)x+3 | | 4(3)+6y=54 | | -3-5s+7+9=3s+3 | | ?=y | | 2m+(-7)=-15 | | 4x+2x+3+6=30+3+2x+2x | | 9x=16.3-5.3 | | 35x=28x+6 | | -2y-2y-8=-5y+2 | | 180-40=y | | 180/x=3/7 | | (3w-5)(2-w)=0 | | 3=2(a+5)+12 | | -2/5x=2x=-5 | | 0.2+0.4t=4 | | 3+1+1x7=x | | 7x+93x+4=143 |