If it's not what You are looking for type in the equation solver your own equation and let us solve it.
59(g+18)=1/6g+3
We move all terms to the left:
59(g+18)-(1/6g+3)=0
Domain of the equation: 6g+3)!=0We multiply parentheses
g∈R
59g-(1/6g+3)+1062=0
We get rid of parentheses
59g-1/6g-3+1062=0
We multiply all the terms by the denominator
59g*6g-3*6g+1062*6g-1=0
Wy multiply elements
354g^2-18g+6372g-1=0
We add all the numbers together, and all the variables
354g^2+6354g-1=0
a = 354; b = 6354; c = -1;
Δ = b2-4ac
Δ = 63542-4·354·(-1)
Δ = 40374732
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$g_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$g_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{40374732}=\sqrt{4*10093683}=\sqrt{4}*\sqrt{10093683}=2\sqrt{10093683}$$g_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6354)-2\sqrt{10093683}}{2*354}=\frac{-6354-2\sqrt{10093683}}{708} $$g_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6354)+2\sqrt{10093683}}{2*354}=\frac{-6354+2\sqrt{10093683}}{708} $
| 43/10-(22/5x+51/5=1/2(-33/5x+11/5) | | 2b+4=3b+6 | | -w/2=-53 | | 3a+3=2a-10 | | 3/5=n/13 | | 2b+10=3b+6 | | 3z+15=2z-8 | | 2(3x+1)=7(2=x) | | y-12+4y+y+7=157 | | 3x-21=2x+6 | | 2z+8=3z-3 | | 5÷6=n-1÷6 | | 6y+(-5)=157 | | -4=(-11-3x)/4 | | 42=-v/3 | | 2(5x+3)-4(7x+1)=8 | | 7.5d+4.5=27 | | -4=(-11-3x) | | 42=-v | | 10x+5+7x-1+40=180 | | 3y+2y-y+40=2(-2y+4) | | 9+14=w | | -6a+40=-2a | | 4c/3-5c/6+3/7=2c/5-7/4 | | 12.5=4+2.5x | | 5x-2x=-42-3x | | (15x-2)=(11x+34) | | 5n=3n-8 | | 3b-7/4=5-4b/6 | | 7-13-1/4h=7 | | -28=-7r | | 3n-49=n+25 |