If it's not what You are looking for type in the equation solver your own equation and let us solve it.
540=3/2b+b+45+2b-90+90
We move all terms to the left:
540-(3/2b+b+45+2b-90+90)=0
Domain of the equation: 2b+b+45+2b-90+90)!=0We add all the numbers together, and all the variables
We move all terms containing b to the left, all other terms to the right
2b+b+2b+90)!=45
b∈R
-(3b+3/2b+45)+540=0
We get rid of parentheses
-3b-3/2b-45+540=0
We multiply all the terms by the denominator
-3b*2b-45*2b+540*2b-3=0
Wy multiply elements
-6b^2-90b+1080b-3=0
We add all the numbers together, and all the variables
-6b^2+990b-3=0
a = -6; b = 990; c = -3;
Δ = b2-4ac
Δ = 9902-4·(-6)·(-3)
Δ = 980028
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{980028}=\sqrt{36*27223}=\sqrt{36}*\sqrt{27223}=6\sqrt{27223}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(990)-6\sqrt{27223}}{2*-6}=\frac{-990-6\sqrt{27223}}{-12} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(990)+6\sqrt{27223}}{2*-6}=\frac{-990+6\sqrt{27223}}{-12} $
| 12t^2-13t-4=0 | | 8÷15=x÷10 | | 3(x+1)-2=3x-5 | | 3x-75=5x-35 | | −3(m+4)=9 | | 6x+8/2–4=3x | | 24=15x-16-9x50 | | v/2+16=17 | | 12=v/4-13 | | 5x+75=2(-37,5) | | 3x+4+2=2-5x=20 | | (8x)=40 | | X+5+5x+13=90 | | 9n+72=8n+96 | | 5|2x|-6=24 | | 6n+18=5n+35 | | 25-45=-2x+10 | | x5+10=25 | | x5+10=25. | | x2+27x-90=0 | | 50-13=2x-3 | | 14+x=7+7 | | 3(x-4)+8x-2=10+1 | | 5-x=10 | | 3z÷12=57 | | 1/3(x−3)=1/4(x−1) | | 52•7=7m | | 1/4x+3=3/4x+1;=8 | | 3(x+5)-24=2(2x-1) | | 7x-13=3x-57 | | 5p+2(2p-7)=17 | | 10/x+2=4 |