50=(x-25)(x-15)

Simple and best practice solution for 50=(x-25)(x-15) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 50=(x-25)(x-15) equation:



50=(x-25)(x-15)
We move all terms to the left:
50-((x-25)(x-15))=0
We multiply parentheses ..
-((+x^2-15x-25x+375))+50=0
We calculate terms in parentheses: -((+x^2-15x-25x+375)), so:
(+x^2-15x-25x+375)
We get rid of parentheses
x^2-15x-25x+375
We add all the numbers together, and all the variables
x^2-40x+375
Back to the equation:
-(x^2-40x+375)
We get rid of parentheses
-x^2+40x-375+50=0
We add all the numbers together, and all the variables
-1x^2+40x-325=0
a = -1; b = 40; c = -325;
Δ = b2-4ac
Δ = 402-4·(-1)·(-325)
Δ = 300
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{300}=\sqrt{100*3}=\sqrt{100}*\sqrt{3}=10\sqrt{3}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40)-10\sqrt{3}}{2*-1}=\frac{-40-10\sqrt{3}}{-2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40)+10\sqrt{3}}{2*-1}=\frac{-40+10\sqrt{3}}{-2} $

See similar equations:

| -6g-4=-4-6g | | 10y+30=0 | | 2(x-4)+34=100 | | (7x)^(4)=(7^(2)*7^(3))/(7^(3x)) | | 7x+15=2(3x=8)+x | | | | (5y-7)+(7y+5)=90 | | 4−3(x+6)=28 | | 5q-1=-1+9q | | -5-9f=-9f-5 | | 11+8x-17=5x+3x+9 | | 8(3+x)=88 | | 180=(x-25)(x-15) | | 4x-12x=120 | | -10n+5-3n=-2n+5 | | 18-3=(12+x) | | 3x*9=6x-3 | | -7+3v=-3v+5 | | -6(5/2x+1/2)=87 | | –2d+–6=–8 | | 5z+12=-8 | | 4(2x+5)=11x+17-3x+3 | | 90=3x+38+9x+28 | | 7=6y-5 | | a+17=+ | | r-27=54 | | -q-6=-2q | | 10q-7=3q+45.5 | | 3r=3+3r | | 4(3x-)=22 | | B+b+45+2/3b+2b-90+90=540 | | 8(x+3)-6=25-4x |

Equations solver categories