180=(x-25)(x-15)

Simple and best practice solution for 180=(x-25)(x-15) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 180=(x-25)(x-15) equation:



180=(x-25)(x-15)
We move all terms to the left:
180-((x-25)(x-15))=0
We multiply parentheses ..
-((+x^2-15x-25x+375))+180=0
We calculate terms in parentheses: -((+x^2-15x-25x+375)), so:
(+x^2-15x-25x+375)
We get rid of parentheses
x^2-15x-25x+375
We add all the numbers together, and all the variables
x^2-40x+375
Back to the equation:
-(x^2-40x+375)
We get rid of parentheses
-x^2+40x-375+180=0
We add all the numbers together, and all the variables
-1x^2+40x-195=0
a = -1; b = 40; c = -195;
Δ = b2-4ac
Δ = 402-4·(-1)·(-195)
Δ = 820
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{820}=\sqrt{4*205}=\sqrt{4}*\sqrt{205}=2\sqrt{205}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40)-2\sqrt{205}}{2*-1}=\frac{-40-2\sqrt{205}}{-2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40)+2\sqrt{205}}{2*-1}=\frac{-40+2\sqrt{205}}{-2} $

See similar equations:

| 4x-12x=120 | | -10n+5-3n=-2n+5 | | 18-3=(12+x) | | 3x*9=6x-3 | | -7+3v=-3v+5 | | -6(5/2x+1/2)=87 | | –2d+–6=–8 | | 5z+12=-8 | | 4(2x+5)=11x+17-3x+3 | | 90=3x+38+9x+28 | | 7=6y-5 | | a+17=+ | | r-27=54 | | -q-6=-2q | | 10q-7=3q+45.5 | | 3r=3+3r | | 4(3x-)=22 | | B+b+45+2/3b+2b-90+90=540 | | 8(x+3)-6=25-4x | | 90=3x+36+9x+28 | | 8x=15=25 | | 3x=+6-1 | | -(-8-4x)=2(3x-4) | | 1/5a+5=-10 | | h-9=9+4h | | -12-16p=16+12p | | -33+3x=66-6x | | -7+7m=8m | | 3p−–5=17 | | -4(x−6)=36 | | -3(7v-2)=-2v-3(7v-8) | | 4(2x+7)+6=50 |

Equations solver categories