504=(2x+12)(2x+22)

Simple and best practice solution for 504=(2x+12)(2x+22) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 504=(2x+12)(2x+22) equation:



504=(2x+12)(2x+22)
We move all terms to the left:
504-((2x+12)(2x+22))=0
We multiply parentheses ..
-((+4x^2+44x+24x+264))+504=0
We calculate terms in parentheses: -((+4x^2+44x+24x+264)), so:
(+4x^2+44x+24x+264)
We get rid of parentheses
4x^2+44x+24x+264
We add all the numbers together, and all the variables
4x^2+68x+264
Back to the equation:
-(4x^2+68x+264)
We get rid of parentheses
-4x^2-68x-264+504=0
We add all the numbers together, and all the variables
-4x^2-68x+240=0
a = -4; b = -68; c = +240;
Δ = b2-4ac
Δ = -682-4·(-4)·240
Δ = 8464
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{8464}=92$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-68)-92}{2*-4}=\frac{-24}{-8} =+3 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-68)+92}{2*-4}=\frac{160}{-8} =-20 $

See similar equations:

| 1/20-7/4u=11/5u | | 2.5=1.5x-3.5 | | g+14=42 | | 4.5=3x-36 | | -7(1-4x)=273 | | 4x-12=x-3÷5 | | 70=-2(-4x-3)+8(4-5x) | | 2+x÷3=10 | | 7(x-6)-6(7-3x)=41 | | 2y+0.5=13.5 | | 2x^2-29x+306=0 | | 6(-1x+4)=24 | | 7.2(.3+x)=8.7 | | -6(1+8v)+5(-7v+8)=34 | | (y+6)^3=0 | | -54=4(b+8)+6(1+7b) | | -5(1-4x)=215 | | -58=4(b+8)+6(1+7b) | | 7+0.4x=-3 | | f(2)=-10*2+2 | | 7(8+2n)=84 | | V=4/3x3.14x2.5 | | 5x+35=40 | | 0=5x+-10 | | -38=3(7n+8)+5(4n+4) | | -7w-42=3w-2 | | -5x-35=40 | | 5x-4=-7x+128 | | -38=3(7n=8)+5(4n+4) | | r^2-2r-5=0 | | 18x+6=12x | | -20=-2(-8x+2)-8(2-6x) |

Equations solver categories