5/u-5=-1/4u-20+1

Simple and best practice solution for 5/u-5=-1/4u-20+1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5/u-5=-1/4u-20+1 equation:



5/u-5=-1/4u-20+1
We move all terms to the left:
5/u-5-(-1/4u-20+1)=0
Domain of the equation: u!=0
u∈R
Domain of the equation: 4u-20+1)!=0
We move all terms containing u to the left, all other terms to the right
4u+1)!=20
u∈R
We add all the numbers together, and all the variables
5/u-(-1/4u-19)-5=0
We get rid of parentheses
5/u+1/4u+19-5=0
We calculate fractions
20u/4u^2+u/4u^2+19-5=0
We add all the numbers together, and all the variables
20u/4u^2+u/4u^2+14=0
We multiply all the terms by the denominator
20u+u+14*4u^2=0
We add all the numbers together, and all the variables
21u+14*4u^2=0
Wy multiply elements
56u^2+21u=0
a = 56; b = 21; c = 0;
Δ = b2-4ac
Δ = 212-4·56·0
Δ = 441
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{441}=21$
$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(21)-21}{2*56}=\frac{-42}{112} =-3/8 $
$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(21)+21}{2*56}=\frac{0}{112} =0 $

See similar equations:

| 5=-n/2+10 | | 6u+9=15 | | 2=4-b/3 | | 7x+8=10-3x | | 180=10x+32 | | 4x-5(4+4x)=-84 | | v/2+16=25 | | 0=5t^2+15t-22 | | 150=(4x+50) | | 0=-5t^2+15t-22 | | 2/7y+3/5y=1 | | 84-x=100-2x | | 180=(4x+50)+150 | | 180=150+(4x+50) | | k^2-2k+8=0 | | 2a-70=a-28 | | 8x+2x-9=6x+7-8 | | 9871*n=987.1 | | -40=-4m | | -1/4x-5=1 | | 2x-4(x-2)=-3+4x-1 | | -17x=-272 | | 0=5t^2+12t-17 | | -4(x+5)=-4x-20−4(x+5)=−4x−20 | | 5q-35=8q-65 | | -224=-16b | | 7c-95=4c-44 | | 19n=-57 | | -224=16r | | 5b-21=b+31 | | X+9=14;x=2,5,23 | | a/5=19 |

Equations solver categories