5/8x+1/12x=51/24

Simple and best practice solution for 5/8x+1/12x=51/24 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5/8x+1/12x=51/24 equation:



5/8x+1/12x=51/24
We move all terms to the left:
5/8x+1/12x-(51/24)=0
Domain of the equation: 8x!=0
x!=0/8
x!=0
x∈R
Domain of the equation: 12x!=0
x!=0/12
x!=0
x∈R
We add all the numbers together, and all the variables
5/8x+1/12x-(+51/24)=0
We get rid of parentheses
5/8x+1/12x-51/24=0
We calculate fractions
(-4896x^2)/4608x^2+2880x/4608x^2+384x/4608x^2=0
We multiply all the terms by the denominator
(-4896x^2)+2880x+384x=0
We add all the numbers together, and all the variables
(-4896x^2)+3264x=0
We get rid of parentheses
-4896x^2+3264x=0
a = -4896; b = 3264; c = 0;
Δ = b2-4ac
Δ = 32642-4·(-4896)·0
Δ = 10653696
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{10653696}=3264$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3264)-3264}{2*-4896}=\frac{-6528}{-9792} =2/3 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3264)+3264}{2*-4896}=\frac{0}{-9792} =0 $

See similar equations:

| (2x-5)+52=5x-16 | | 100+5x=250+2x | | 8x−4(5−x)=−44 | | 7x+3=7x+2+1 | | 2p+17=47 | | 9n^2-23n+20=3n | | 4.5x=122 | | 6n+36=84 | | v2=6 | | 3s+16=28 | | 5x-35=190 | | −72=6(x−2)* | | 9p-10=80 | | 9x+25=3x+15 | | 2+8j=j–19 | | 2{8+p}=22p=3 | | 5x+3x-16=24 | | -4x-3=9x+9 | | 35xY=350 | | 7(2b-2)=2(1-b) | | 6t–7+2t=5(t+4) | | –32–35f=–17 | | 12x+24=2x-1 | | (2x+37)=(4x-13) | | –4−7u=–8u | | 3x+16=-x+4x+2 | | -4x-3=9x=9 | | 10x-24=-4x+60 | | 1.5+4.4t-2.4.5^1.t=0.5 | | 20x-8=68 | | (4x-13)=2x+37) | | 5^3x=2^2x+1 |

Equations solver categories