5/6x=2+7/10x

Simple and best practice solution for 5/6x=2+7/10x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5/6x=2+7/10x equation:



5/6x=2+7/10x
We move all terms to the left:
5/6x-(2+7/10x)=0
Domain of the equation: 6x!=0
x!=0/6
x!=0
x∈R
Domain of the equation: 10x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
5/6x-(7/10x+2)=0
We get rid of parentheses
5/6x-7/10x-2=0
We calculate fractions
50x/60x^2+(-42x)/60x^2-2=0
We multiply all the terms by the denominator
50x+(-42x)-2*60x^2=0
Wy multiply elements
-120x^2+50x+(-42x)=0
We get rid of parentheses
-120x^2+50x-42x=0
We add all the numbers together, and all the variables
-120x^2+8x=0
a = -120; b = 8; c = 0;
Δ = b2-4ac
Δ = 82-4·(-120)·0
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{64}=8$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-8}{2*-120}=\frac{-16}{-240} =1/15 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+8}{2*-120}=\frac{0}{-240} =0 $

See similar equations:

| 12x+8=21x+3 | | 5.8n=48.72 | | 19-13f=-17f-5 | | Y=-2x-48 | | (5/6)x=2+(7/10)x | | (5/6)x=2+7/10 | | -2=5x+13-2=5x+13 | | 110+6x=29x-5 | | 6=y+6/4 | | 11=n−7 | | 5a-1/3=3 | | 10e+17=8e+4 | | 2/(x-5)=3/(2x-3) | | z=180-110=70 | | 3y+21+138=180 | | 28/y=-4 | | x5+16=18 | | (x-3)/(2x+1)=4 | | 3x+12-6x=20-16x+13x-8 | | -10/u=2 | | 8+4d=9d-7 | | 3x-20=x-4 | | 4-x/2=-2 | | 21x-6-16x+3=21x-5-16x+13 | | 6/(x-5)=3 | | w+4.3=7.97 | | c-(-16)=-12 | | 3x+108=7x | | x/4=-0 | | y+4.49=8.97 | | t-7/3=9 | | 2x^2+9x+25=0 |

Equations solver categories