(5/6)x=2+7/10

Simple and best practice solution for (5/6)x=2+7/10 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (5/6)x=2+7/10 equation:



(5/6)x=2+7/10
We move all terms to the left:
(5/6)x-(2+7/10)=0
Domain of the equation: 6)x!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(+5/6)x-(7/10+2)=0
We multiply parentheses
5x^2-(7/10+2)=0
We get rid of parentheses
5x^2-2-7/10=0
We multiply all the terms by the denominator
5x^2*10-7-2*10=0
We add all the numbers together, and all the variables
5x^2*10-27=0
Wy multiply elements
50x^2-27=0
a = 50; b = 0; c = -27;
Δ = b2-4ac
Δ = 02-4·50·(-27)
Δ = 5400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{5400}=\sqrt{900*6}=\sqrt{900}*\sqrt{6}=30\sqrt{6}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-30\sqrt{6}}{2*50}=\frac{0-30\sqrt{6}}{100} =-\frac{30\sqrt{6}}{100} =-\frac{3\sqrt{6}}{10} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+30\sqrt{6}}{2*50}=\frac{0+30\sqrt{6}}{100} =\frac{30\sqrt{6}}{100} =\frac{3\sqrt{6}}{10} $

See similar equations:

| -2=5x+13-2=5x+13 | | 110+6x=29x-5 | | 6=y+6/4 | | 11=n−7 | | 5a-1/3=3 | | 10e+17=8e+4 | | 2/(x-5)=3/(2x-3) | | z=180-110=70 | | 3y+21+138=180 | | 28/y=-4 | | x5+16=18 | | (x-3)/(2x+1)=4 | | 3x+12-6x=20-16x+13x-8 | | -10/u=2 | | 8+4d=9d-7 | | 3x-20=x-4 | | 4-x/2=-2 | | 21x-6-16x+3=21x-5-16x+13 | | 6/(x-5)=3 | | w+4.3=7.97 | | c-(-16)=-12 | | 3x+108=7x | | x/4=-0 | | y+4.49=8.97 | | t-7/3=9 | | 2x^2+9x+25=0 | | 0=-32x-19 | | (3x/2)=x+6 | | 3-5k=23 | | ∠A=5x−18=3x+42 | | -2.3=w/5+10.2 | | 5(x+)=-25 |

Equations solver categories