5/6u+2-u=1/6u

Simple and best practice solution for 5/6u+2-u=1/6u equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5/6u+2-u=1/6u equation:



5/6u+2-u=1/6u
We move all terms to the left:
5/6u+2-u-(1/6u)=0
Domain of the equation: 6u!=0
u!=0/6
u!=0
u∈R
Domain of the equation: 6u)!=0
u!=0/1
u!=0
u∈R
We add all the numbers together, and all the variables
5/6u-u-(+1/6u)+2=0
We add all the numbers together, and all the variables
-1u+5/6u-(+1/6u)+2=0
We get rid of parentheses
-1u+5/6u-1/6u+2=0
We multiply all the terms by the denominator
-1u*6u+2*6u+5-1=0
We add all the numbers together, and all the variables
-1u*6u+2*6u+4=0
Wy multiply elements
-6u^2+12u+4=0
a = -6; b = 12; c = +4;
Δ = b2-4ac
Δ = 122-4·(-6)·4
Δ = 240
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{240}=\sqrt{16*15}=\sqrt{16}*\sqrt{15}=4\sqrt{15}$
$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-4\sqrt{15}}{2*-6}=\frac{-12-4\sqrt{15}}{-12} $
$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+4\sqrt{15}}{2*-6}=\frac{-12+4\sqrt{15}}{-12} $

See similar equations:

| 4/5(t-3)-2.7=15.3 | | 3x+5(x-2)=-50 | | -3s=-4s+5 | | 3a^2+75=30a | | 2^(x-1)+2^(x-2)+2^(x-3)+2^(x-4)=960 | | A+g2+81=180 | | 3+3(-2x-3)+x=-1 | | -h+7=3h-9 | | 12x+6,x=-2 | | w−18=30 | | 6n=8=38 | | 25-3t=16 | | 2x+58+6x=180 | | -2n+9=8n-1 | | 2-1/4f=f-3/4f+3 | | 7n(-5n)=0 | | -45=3(d-9)-18 | | 3x+20=7x-44 | | 81x2−15=10 | | -p+1=10-2p | | x-x^2+6x+9=9 | | -5(r-6)-10=30 | | 5x+6,x=-3 | | y^2-6y-25y=0 | | 4v=17 | | n+24=180 | | –5(r–6)–10=30 | | 22=3p-5p | | y-6y-25y=0 | | 6v=32 | | 2x-5,x=4 | | -3b-16=20 |

Equations solver categories