If it's not what You are looking for type in the equation solver your own equation and let us solve it.
+A2+81=180
We move all terms to the left:
+A2+81-(180)=0
We add all the numbers together, and all the variables
A^2-99=0
a = 1; b = 0; c = -99;
Δ = b2-4ac
Δ = 02-4·1·(-99)
Δ = 396
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$A_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$A_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{396}=\sqrt{36*11}=\sqrt{36}*\sqrt{11}=6\sqrt{11}$$A_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{11}}{2*1}=\frac{0-6\sqrt{11}}{2} =-\frac{6\sqrt{11}}{2} =-3\sqrt{11} $$A_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{11}}{2*1}=\frac{0+6\sqrt{11}}{2} =\frac{6\sqrt{11}}{2} =3\sqrt{11} $
| 3+3(-2x-3)+x=-1 | | -h+7=3h-9 | | 12x+6,x=-2 | | w−18=30 | | 6n=8=38 | | 25-3t=16 | | 2x+58+6x=180 | | -2n+9=8n-1 | | 2-1/4f=f-3/4f+3 | | 7n(-5n)=0 | | -45=3(d-9)-18 | | 3x+20=7x-44 | | 81x2−15=10 | | -p+1=10-2p | | x-x^2+6x+9=9 | | -5(r-6)-10=30 | | 5x+6,x=-3 | | y^2-6y-25y=0 | | 4v=17 | | n+24=180 | | –5(r–6)–10=30 | | 22=3p-5p | | y-6y-25y=0 | | 6v=32 | | 2x-5,x=4 | | -3b-16=20 | | 128+2x26=180 | | 5=b/2+3 | | 6g-19=6 | | 50=-5(q-4) | | 51-2p-8p=21 | | 50=-5(q-4 |