5/6d-9=1/3d+11

Simple and best practice solution for 5/6d-9=1/3d+11 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5/6d-9=1/3d+11 equation:



5/6d-9=1/3d+11
We move all terms to the left:
5/6d-9-(1/3d+11)=0
Domain of the equation: 6d!=0
d!=0/6
d!=0
d∈R
Domain of the equation: 3d+11)!=0
d∈R
We get rid of parentheses
5/6d-1/3d-11-9=0
We calculate fractions
15d/18d^2+(-6d)/18d^2-11-9=0
We add all the numbers together, and all the variables
15d/18d^2+(-6d)/18d^2-20=0
We multiply all the terms by the denominator
15d+(-6d)-20*18d^2=0
Wy multiply elements
-360d^2+15d+(-6d)=0
We get rid of parentheses
-360d^2+15d-6d=0
We add all the numbers together, and all the variables
-360d^2+9d=0
a = -360; b = 9; c = 0;
Δ = b2-4ac
Δ = 92-4·(-360)·0
Δ = 81
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{81}=9$
$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-9}{2*-360}=\frac{-18}{-720} =1/40 $
$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+9}{2*-360}=\frac{0}{-720} =0 $

See similar equations:

| 1/2(-8)+3x=0 | | 1/2x+1/3=1/2 | | -.333(9x+42)-5x=-70 | | 5-5b=-6b | | 8y-20=12y+6 | | 15=x-(-1) | | p-5=5p+3 | | 4x+60=-10x | | 5(2x+-8)=90 | | x/7+6=20 | | 5x-12x+24=-11 | | 5b+63=5b+63 | | 3-4w=5(w+6) | | 6a+2(a-6)=11a-12+3a | | 5(4-x)+2x=6(2x-3)+14 | | -4(x+6=40 | | 5x-14+x=30-2x | | 14y+43=99 | | 485=40+20x | | 2(4x+3)=5(x* | | 5x+4=2x=8 | | 3b-3=-7+3b-b | | 3(10x+7)=4(3x-8)-1 | | 11x5x-1=65x-36 | | -4x+15=51 | | 3(2a-2=(3a-3) | | (10x+5)^2-20=0 | | -14=4+q | | 3+6t=-15 | | 11=2x+1/2 | | 135=x(4+3+5) | | -3x=-30;x |

Equations solver categories