5/3x-2x=180

Simple and best practice solution for 5/3x-2x=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5/3x-2x=180 equation:



5/3x-2x=180
We move all terms to the left:
5/3x-2x-(180)=0
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
We add all the numbers together, and all the variables
-2x+5/3x-180=0
We multiply all the terms by the denominator
-2x*3x-180*3x+5=0
Wy multiply elements
-6x^2-540x+5=0
a = -6; b = -540; c = +5;
Δ = b2-4ac
Δ = -5402-4·(-6)·5
Δ = 291720
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{291720}=\sqrt{4*72930}=\sqrt{4}*\sqrt{72930}=2\sqrt{72930}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-540)-2\sqrt{72930}}{2*-6}=\frac{540-2\sqrt{72930}}{-12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-540)+2\sqrt{72930}}{2*-6}=\frac{540+2\sqrt{72930}}{-12} $

See similar equations:

| b+-6=6 | | 2(w-9)=14 | | (2x=16)(3x-12) | | 20k+60=10k+90​ | | (2x-1/4)+(x/3)=2 | | (2x-1/4))+(x/3)=2 | | 46-11x=14+5x | | 6(6x-7)=-186 | | 12×+10=-2x | | n/2-4=14 | | 4(-3x+6)=-72 | | 3x+12-7=5x+8-2x | | 3(2x-4)=2(x+1) | | 4−13c=−8 | | ((2x-1)/4))+((x)/3)=2 | | u/5+10=19 | | 3x+12=7× | | 4x2–8x–60=0 | | 7x=8x-69=92-8x | | -5(x-13)=-6(2x-18) | | 14/x=1.5 | | (3x-5)+(x)+(x-5)=180 | | x×3=128 | | 3x.5=35 | | 6x+2(x+5)=46 | | p−316=−212p= | | 1/3x=7=2/3 | | 5(3w+3)/3=3 | | 8(x-15)=296 | | 2z/9+1=-8 | | 4/(x+3)-1/(x-3)=4x/x^2-9 | | 6/4x+10=60 |

Equations solver categories