5/3b-5=3/2b+12

Simple and best practice solution for 5/3b-5=3/2b+12 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5/3b-5=3/2b+12 equation:



5/3b-5=3/2b+12
We move all terms to the left:
5/3b-5-(3/2b+12)=0
Domain of the equation: 3b!=0
b!=0/3
b!=0
b∈R
Domain of the equation: 2b+12)!=0
b∈R
We get rid of parentheses
5/3b-3/2b-12-5=0
We calculate fractions
10b/6b^2+(-9b)/6b^2-12-5=0
We add all the numbers together, and all the variables
10b/6b^2+(-9b)/6b^2-17=0
We multiply all the terms by the denominator
10b+(-9b)-17*6b^2=0
Wy multiply elements
-102b^2+10b+(-9b)=0
We get rid of parentheses
-102b^2+10b-9b=0
We add all the numbers together, and all the variables
-102b^2+b=0
a = -102; b = 1; c = 0;
Δ = b2-4ac
Δ = 12-4·(-102)·0
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{1}=1$
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-1}{2*-102}=\frac{-2}{-204} =1/102 $
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+1}{2*-102}=\frac{0}{-204} =0 $

See similar equations:

| -t+3t-10=4t+2 | | -2p+2(6p+4)=88 | | A3=n-12 | | 25-x=40-2x | | 55/9x+10/9x=281/3 | | (3x)=(4x+19) | | −21x+15=−5x+7 | | X^2+18x+14=-3 | | 2v+6-4v=-29 | | .x+1=x–53 | | 3x-2=22-5x | | 18−8(–6s−19)=14s | | x-218=2 | | -4n+2=6n+8(4n-3) | | -93=2(1-8x)-3x | | 2/9=10/y | | x−2–18=2 | | A2=n-12 | | 2p+10=p | | 19x-6-12x=7x+2+ | | 0.13x100=13 | | 150=8x+6x9 | | 4x+5(5x-39)=159 | | 6(x–4)+2=8 | | A+x-30=90 | | 4x+3x+2=90 | | 2/3x−6=18 | | -2n+6=8n+4(2n-4) | | -7(x+2)+13x=6x-4+ | | 5y+40=180 | | ×/3x+1=7 | | 20(20-x)=240= |

Equations solver categories