5/2(2c+18)=1/5(25c+30)

Simple and best practice solution for 5/2(2c+18)=1/5(25c+30) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5/2(2c+18)=1/5(25c+30) equation:



5/2(2c+18)=1/5(25c+30)
We move all terms to the left:
5/2(2c+18)-(1/5(25c+30))=0
Domain of the equation: 2(2c+18)!=0
c∈R
Domain of the equation: 5(25c+30))!=0
c∈R
We calculate fractions
(25c2/(2(2c+18)*5(25c+30)))+(-2c2/(2(2c+18)*5(25c+30)))=0
We calculate terms in parentheses: +(25c2/(2(2c+18)*5(25c+30))), so:
25c2/(2(2c+18)*5(25c+30))
We multiply all the terms by the denominator
25c2
We add all the numbers together, and all the variables
25c^2
Back to the equation:
+(25c^2)
We calculate terms in parentheses: +(-2c2/(2(2c+18)*5(25c+30))), so:
-2c2/(2(2c+18)*5(25c+30))
We multiply all the terms by the denominator
-2c2
We add all the numbers together, and all the variables
-2c^2
Back to the equation:
+(-2c^2)
We add all the numbers together, and all the variables
25c^2+(-2c^2)=0
We get rid of parentheses
25c^2-2c^2=0
We add all the numbers together, and all the variables
23c^2=0
a = 23; b = 0; c = 0;
Δ = b2-4ac
Δ = 02-4·23·0
Δ = 0
Delta is equal to zero, so there is only one solution to the equation
Stosujemy wzór:
$c=\frac{-b}{2a}=\frac{0}{46}=0$

See similar equations:

| q+|10|=2 | | z/8+2=4 | | 7y-8=7(y+2) | | b/11=-8 | | p-8÷0.5=-3 | | 4(2x+1)=5x-3+3x | | Y=0.5x+-6 | | 2(4-3x)=3(x+1) | | 3-x-2=6 | | (6x+29)=(3x+124) | | 3x-5)(2x+4)=0 | | Y-6=0.5x+7 | | (6c+2)=18-c/9 | | 4x-5-x=11-3x | | 7u+7=16u+61 | | 12-n=-34 | | 4x+8-x=1/2(12x-20) | | 0.5x+34=0 | | (8x-41)=(4x+35) | | (4x+188)=(6x+216) | | 3/4m-1/6=2/3m+1/4 | | 3-6-2w=4 | | -18=x/10 | | 3x^2-2x+12x=0 | | -5(17x-14)-12(-31-9x)=24x+33x | | 2x-1=4x+13 | | 40x=-21 | | 9x-8=3x+5 | | 4u-9=27 | | (17x+12)+(3x+4)=120 | | -80=-72x | | 6x²-12x=0 |

Equations solver categories