If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5/12+1/6d+1/3+1/12d=6
We move all terms to the left:
5/12+1/6d+1/3+1/12d-(6)=0
Domain of the equation: 6d!=0
d!=0/6
d!=0
d∈R
Domain of the equation: 12d!=0determiningTheFunctionDomain 1/6d+1/12d-6+5/12+1/3=0
d!=0/12
d!=0
d∈R
We calculate fractions
864d^2/2592d^2+432d/2592d^2+54d/2592d^2+270d/2592d^2-6=0
We multiply all the terms by the denominator
864d^2+432d+54d+270d-6*2592d^2=0
We add all the numbers together, and all the variables
864d^2+756d-6*2592d^2=0
Wy multiply elements
864d^2-15552d^2+756d=0
We add all the numbers together, and all the variables
-14688d^2+756d=0
a = -14688; b = 756; c = 0;
Δ = b2-4ac
Δ = 7562-4·(-14688)·0
Δ = 571536
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{571536}=756$$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(756)-756}{2*-14688}=\frac{-1512}{-29376} =7/136 $$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(756)+756}{2*-14688}=\frac{0}{-29376} =0 $
| k^2+18K-63=0 | | 38+b=48 | | 7^x+2=2401 | | -2p+12=-2p-2p | | (16x+5)+(x)=90 | | Y=23x-3 | | 1/2n=5+9 | | 19y-42=22 | | r=1582/6 | | 3(x+5)=2(—6-x)-2x | | 1/5(55-10e)=55 | | 7(x-4)^2-2=54 | | 2x+3(-2x+17)=19 | | 3b=4/5 | | 5y^2+60y+175=0 | | 6(x-7)-7(x-6)=x+6-(x-3 | | (x/x^2-25)-(x+3/x^2-5x)=(-7/x^2+5x) | | 12-2n=8n+2n | | x+1/3=8-x+4/2 | | 7z–5=3z–29 | | 1/4(12-4)+1=3(8x+1) | | 30=6r-24+3r= | | 2/3(1+x)=-1/2x | | x/4=36/48 | | X-1=0y+3=0 | | -2(2x+3)=-4(x+1)-2× | | 16x^2-48x-28=0 | | 8n+3n+4=40 | | 6x+4=82 | | 12d+d-12d=17 | | 9-(2b+9)=-8b-8 | | 6x-(10x+7)=-11 |