If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5-(8x-7)+18x=31x(90+28x)-45
We move all terms to the left:
5-(8x-7)+18x-(31x(90+28x)-45)=0
We add all the numbers together, and all the variables
-(8x-7)+18x-(31x(28x+90)-45)+5=0
We add all the numbers together, and all the variables
18x-(8x-7)-(31x(28x+90)-45)+5=0
We get rid of parentheses
18x-8x-(31x(28x+90)-45)+7+5=0
We calculate terms in parentheses: -(31x(28x+90)-45), so:We add all the numbers together, and all the variables
31x(28x+90)-45
We multiply parentheses
868x^2+2790x-45
Back to the equation:
-(868x^2+2790x-45)
10x-(868x^2+2790x-45)+12=0
We get rid of parentheses
-868x^2+10x-2790x+45+12=0
We add all the numbers together, and all the variables
-868x^2-2780x+57=0
a = -868; b = -2780; c = +57;
Δ = b2-4ac
Δ = -27802-4·(-868)·57
Δ = 7926304
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{7926304}=\sqrt{16*495394}=\sqrt{16}*\sqrt{495394}=4\sqrt{495394}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2780)-4\sqrt{495394}}{2*-868}=\frac{2780-4\sqrt{495394}}{-1736} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2780)+4\sqrt{495394}}{2*-868}=\frac{2780+4\sqrt{495394}}{-1736} $
| 2.5=x60 | | (X2+5x+4)-(2x2-3x+6)=………. | | X-1/3=2x+3 | | X-4/6=x+1 | | 8x-64=128 | | x/6=15/40 | | 8x+128=224 | | 5(7y²+1)+11y=11 | | 2r+6/2=-5 | | (z+7)(z-7)=15 | | 3x-4/5=-2x+6 | | 20=12-y/12*100 | | x-36000=-5x | | f(2)=3-2(2)^2 | | d=16/ | | ...x12=-144 | | 4(4.5x-3.5)=2.5x | | 65x12= | | 2x-3=2-(3x-1)-5 | | 17x⁵+15=0 | | (3x+8)/4=14 | | 3e-12=7e-8 | | 4/3y+y+8/3y=180 | | x4+-11x2+-12=0 | | 2x+20+2x=180° | | X².8=8.x² | | 10n-15-2n=17 | | 10x-5=6(8x+3)-5x | | X2.8=8.x2 | | -5x^2-27x+56=0 | | 4x+8=-3x+7 | | 25+3=5x |