4/3y+y+8/3y=180

Simple and best practice solution for 4/3y+y+8/3y=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 4/3y+y+8/3y=180 equation:



4/3y+y+8/3y=180
We move all terms to the left:
4/3y+y+8/3y-(180)=0
Domain of the equation: 3y!=0
y!=0/3
y!=0
y∈R
We add all the numbers together, and all the variables
y+4/3y+8/3y-180=0
We multiply all the terms by the denominator
y*3y-180*3y+4+8=0
We add all the numbers together, and all the variables
y*3y-180*3y+12=0
Wy multiply elements
3y^2-540y+12=0
a = 3; b = -540; c = +12;
Δ = b2-4ac
Δ = -5402-4·3·12
Δ = 291456
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{291456}=\sqrt{576*506}=\sqrt{576}*\sqrt{506}=24\sqrt{506}$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-540)-24\sqrt{506}}{2*3}=\frac{540-24\sqrt{506}}{6} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-540)+24\sqrt{506}}{2*3}=\frac{540+24\sqrt{506}}{6} $

See similar equations:

| x4+-11x2+-12=0 | | 2x+20+2x=180° | | X².8=8.x² | | 10n-15-2n=17 | | 10x-5=6(8x+3)-5x | | X2.8=8.x2 | | -5x^2-27x+56=0 | | 4x+8=-3x+7 | | 25+3=5x | | 5x=25+3 | | 3+2x-1=4-3x-3 | | X+40×90/100=x+x+40/2 | | (6x+18)°=8x° | | 7x=5x-(3x-2) | | 3(2x+4)=6x+126x=12x=2 | | 5(4×2x)=9(x+4) | | 7=x/2=4 | | 4(y+8)-8y=4 | | 5(v-8)-7v=-36 | | 4(a+6)=4a+24 | | -8x-7+5x=28 | | -8u+5(u+4)=17 | | (2x+6)(3x−3)=0 | | 2000x=6000 | | 50x=25000 | | 4(x+1)+1=5(2x+1)-6 | | 1,5x+12=7-x | | -2x^2+10x-6=0 | | 3x=9{x+5} | | -4y+1(-7y-4)=-5-6(-3-y) | | w-0.03=0.451 | | t-8.37=0.08 |

Equations solver categories