If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5(y+1)-7=3y(y-1)+2y
We move all terms to the left:
5(y+1)-7-(3y(y-1)+2y)=0
We multiply parentheses
5y-(3y(y-1)+2y)+5-7=0
We calculate terms in parentheses: -(3y(y-1)+2y), so:We add all the numbers together, and all the variables
3y(y-1)+2y
We add all the numbers together, and all the variables
2y+3y(y-1)
We multiply parentheses
3y^2+2y-3y
We add all the numbers together, and all the variables
3y^2-1y
Back to the equation:
-(3y^2-1y)
5y-(3y^2-1y)-2=0
We get rid of parentheses
-3y^2+5y+1y-2=0
We add all the numbers together, and all the variables
-3y^2+6y-2=0
a = -3; b = 6; c = -2;
Δ = b2-4ac
Δ = 62-4·(-3)·(-2)
Δ = 12
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{12}=\sqrt{4*3}=\sqrt{4}*\sqrt{3}=2\sqrt{3}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{3}}{2*-3}=\frac{-6-2\sqrt{3}}{-6} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{3}}{2*-3}=\frac{-6+2\sqrt{3}}{-6} $
| 7d+9d+10=-4d-10 | | 15q-(-4q)-8q-(-2q)-(-2)=-11 | | 10u+24=4u+30 | | 9n—4n-10+7n=-10 | | w-15=-4w−15=−4 | | 2k+4K-4K+k+2k=10 | | 4p−4=4p+4 | | 7a+65=3a+73 | | |9+6x=4| | | 7y-4=9y-2 | | 7w-4w-2w-w+3w+2=14 | | 3x(2x-5)=180 | | 14z=z+91 | | 19p-36=15p+4 | | 6n+4n-6n-n=3 | | -4n-4=-5n | | 4/13=x/26 | | 2u+4u=16 | | 9y+85=2y+92 | | u=3.57=6.31 | | 4t-44=2t | | 5(y+1)-7=(y-1)+2y | | -11x15=-144 | | 2t=4t-44 | | 19y+2y-15y-3y-2=7 | | 14m+6m=20 | | 34x+2x−3=−14x+2134x+2x-3=-14x+21 | | 3c-100=2c-34 | | -16c-(-11c)-9c=-14 | | 8s-72=2s | | 15+4x+9=18 | | 11g-2g=9 |