If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5(3x-7)(9-2x)=(15+4x)
We move all terms to the left:
5(3x-7)(9-2x)-((15+4x))=0
We add all the numbers together, and all the variables
5(3x-7)(-2x+9)-((4x+15))=0
We multiply parentheses ..
5(-6x^2+27x+14x-63)-((4x+15))=0
We calculate terms in parentheses: -((4x+15)), so:We multiply parentheses
(4x+15)
We get rid of parentheses
4x+15
Back to the equation:
-(4x+15)
-30x^2+135x+70x-(4x+15)-315=0
We get rid of parentheses
-30x^2+135x+70x-4x-15-315=0
We add all the numbers together, and all the variables
-30x^2+201x-330=0
a = -30; b = 201; c = -330;
Δ = b2-4ac
Δ = 2012-4·(-30)·(-330)
Δ = 801
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{801}=\sqrt{9*89}=\sqrt{9}*\sqrt{89}=3\sqrt{89}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(201)-3\sqrt{89}}{2*-30}=\frac{-201-3\sqrt{89}}{-60} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(201)+3\sqrt{89}}{2*-30}=\frac{-201+3\sqrt{89}}{-60} $
| a=2(40)/51^2 | | 2t/2=24/2 | | 0.8t+0.13=2t-1.37 | | 2)−4n−8=4(−3n+2) | | -8(x+4)=2(5x-7) | | 5x+34=14x+2 | | 75+60(x-1)=375 | | 5x+1+16x-1=9 | | -8y+6(y+6)=38 | | 2x-1+3x+1=15 | | 225=x(x+8) | | 115+5x-10x=180 | | 3x^2+16x−10=6x−2 | | 8xx12=96 | | 14(25x+35)=-2.5-38x | | 4x+1+2x+5=180 | | 3x2+16x−10=6x−2 | | 1b-7=-3 | | -41=-60x | | 14(25x+35)=-2.5–38x | | x+(x+2)+75=182 | | x+(x+2)=182 | | 1x-3=1x+5=180 | | 90x-47+43=180 | | (6y+19)2=75 | | 8t+7=20-t | | x–-6=-74 | | 16b2+60b-100=b | | 31+2.1x=38+3 | | -7.5x=-96 | | x–(-6)=-74 | | -2(x-)=5x-4 |