If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5(3/5x-3)=3/4x-15
We move all terms to the left:
5(3/5x-3)-(3/4x-15)=0
Domain of the equation: 5x-3)!=0
x∈R
Domain of the equation: 4x-15)!=0We multiply parentheses
x∈R
15x-(3/4x-15)-15=0
We get rid of parentheses
15x-3/4x+15-15=0
We multiply all the terms by the denominator
15x*4x+15*4x-15*4x-3=0
Wy multiply elements
60x^2+60x-60x-3=0
We add all the numbers together, and all the variables
60x^2-3=0
a = 60; b = 0; c = -3;
Δ = b2-4ac
Δ = 02-4·60·(-3)
Δ = 720
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{720}=\sqrt{144*5}=\sqrt{144}*\sqrt{5}=12\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{5}}{2*60}=\frac{0-12\sqrt{5}}{120} =-\frac{12\sqrt{5}}{120} =-\frac{\sqrt{5}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{5}}{2*60}=\frac{0+12\sqrt{5}}{120} =\frac{12\sqrt{5}}{120} =\frac{\sqrt{5}}{10} $
| 6/9=x/20 | | 2x(x-4)-2x^2+8=16 | | 70=2(4x+5x) | | 2/3p-1/2=5/18 | | 2/3p-1/2=5/8 | | (8+5x)*(7+3x)=0 | | (x+2)(x+3)=(x=1)(x+5) | | (x+2)(x+3)=(x=1)(x+50 | | 6(2x-10)=24 | | (u-6)^2=2u^2-17u+20 | | (x)^18=1.9 | | 6(p-3)-7=5(4p+3)-12 | | 9n^2+8=44 | | F(x)=√4x | | 1/3(7x+5)=2/3-4(2x+8) | | 6+4y=-8 | | 97(t)=16t^2 | | F(x)=3x^2+6-5 | | 4x=-1+25 | | 3x+2x=99 | | 3(t−4)=−63(t-4)=-6 | | 27x^2=192 | | 27x=192 | | 6x+14=-2x-2 | | 3/4+m-3/4=5/4+3/4 | | 7b–12=-19 | | 5(y+3)=4 | | |4x-5|=18x+3 | | 2-b/3=-3/2 | | 4/3-1/3=q+1/3-1/3 | | 2-b/3=-9/2 | | |4x-5|=18+3 |