If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5(2x-1)=(3x+1)(x-3)
We move all terms to the left:
5(2x-1)-((3x+1)(x-3))=0
We multiply parentheses
10x-((3x+1)(x-3))-5=0
We multiply parentheses ..
-((+3x^2-9x+x-3))+10x-5=0
We calculate terms in parentheses: -((+3x^2-9x+x-3)), so:We add all the numbers together, and all the variables
(+3x^2-9x+x-3)
We get rid of parentheses
3x^2-9x+x-3
We add all the numbers together, and all the variables
3x^2-8x-3
Back to the equation:
-(3x^2-8x-3)
10x-(3x^2-8x-3)-5=0
We get rid of parentheses
-3x^2+10x+8x+3-5=0
We add all the numbers together, and all the variables
-3x^2+18x-2=0
a = -3; b = 18; c = -2;
Δ = b2-4ac
Δ = 182-4·(-3)·(-2)
Δ = 300
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{300}=\sqrt{100*3}=\sqrt{100}*\sqrt{3}=10\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-10\sqrt{3}}{2*-3}=\frac{-18-10\sqrt{3}}{-6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+10\sqrt{3}}{2*-3}=\frac{-18+10\sqrt{3}}{-6} $
| 5x+0.45x=49.5 | | g-9.8=-6 | | |3x+1|=10* | | -8x=7-(7.2x+8.8)+1x | | w-4.9=4.5 | | 21x+157=3 | | 2=2.5x+7 | | y-7.8=1.9 | | k-7=5.8 | | k-7=8.8 | | 3(n-2)=42 | | 20-(2x-5=25 | | 145=-5(5n-4) | | 2x+3=1,2-x | | g2=1024 | | –6m+m=–5m | | z2-30=19 | | 192=4/3x | | 114=-6n-8(-3n-3) | | 5(3x+6)+9=-144 | | 268=-4(8x-3) | | 45+2b-2=67 | | (2/5-x)10=16 | | (2/5*x)10=16 | | 25^x-3=(1/125)^x+2 | | 4x=1/3=x-5/2 | | 8(d+8)=104 | | 109=6(-2p+8)+1 | | -19=-8a(4+a)-(2a+1) | | -19=-8a(4+9)-(2a+1) | | 2x/3=+26 | | 11-+1=-4(x+4)= |