(2/5*x)10=16

Simple and best practice solution for (2/5*x)10=16 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2/5*x)10=16 equation:



(2/5*x)10=16
We move all terms to the left:
(2/5*x)10-(16)=0
Domain of the equation: 5*x)10!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(+2/5*x)10-16=0
We multiply parentheses
20x^2-16=0
a = 20; b = 0; c = -16;
Δ = b2-4ac
Δ = 02-4·20·(-16)
Δ = 1280
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1280}=\sqrt{256*5}=\sqrt{256}*\sqrt{5}=16\sqrt{5}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{5}}{2*20}=\frac{0-16\sqrt{5}}{40} =-\frac{16\sqrt{5}}{40} =-\frac{2\sqrt{5}}{5} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{5}}{2*20}=\frac{0+16\sqrt{5}}{40} =\frac{16\sqrt{5}}{40} =\frac{2\sqrt{5}}{5} $

See similar equations:

| 25^x-3=(1/125)^x+2 | | 4x=1/3=x-5/2 | | 8(d+8)=104 | | 109=6(-2p+8)+1 | | -19=-8a(4+a)-(2a+1) | | -19=-8a(4+9)-(2a+1) | | 2x/3=+26 | | 11-+1=-4(x+4)= | | 3^2x-1=1/243 | | 4y-8=22-y, | | 3b+15.75=42 | | x²+12x+1=0 | | X=2z-1 | | 10=2(3+w) | | -2=-2(3+y) | | t+15/5=-5 | | 4x+3x+2x=72,000 | | 1=t+4 | | 2x-3=7x+1 | | 7x+0.2•(x-5)+13=7x-0.2•(x-6)+11.2 | | 7y-56+37-0.25y=6.75y-19 | | 12z-4+3z-15z=15z+66-50z | | 5x–1=11 | | 1. 9x+13=4 | | x+3=16-5 | | 11x+8=8x+53 | | 5x-3=34+8 | | x+2(4)=7-3x | | x(x–4)–6x+24=0 | | )x(x–4)–6x+24=0 | | -4(3x+2)=40+6x | | 6s+45=201 |

Equations solver categories