5(2x+1)+4=6(3x2)-7

Simple and best practice solution for 5(2x+1)+4=6(3x2)-7 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5(2x+1)+4=6(3x2)-7 equation:



5(2x+1)+4=6(3x^2)-7
We move all terms to the left:
5(2x+1)+4-(6(3x^2)-7)=0
We multiply parentheses
10x-(63x^2-7)+5+4=0
We get rid of parentheses
-63x^2+10x+7+5+4=0
We add all the numbers together, and all the variables
-63x^2+10x+16=0
a = -63; b = 10; c = +16;
Δ = b2-4ac
Δ = 102-4·(-63)·16
Δ = 4132
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{4132}=\sqrt{4*1033}=\sqrt{4}*\sqrt{1033}=2\sqrt{1033}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{1033}}{2*-63}=\frac{-10-2\sqrt{1033}}{-126} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{1033}}{2*-63}=\frac{-10+2\sqrt{1033}}{-126} $

See similar equations:

| 5(2x+1)+4=6(3x+2)-7 | | 39+9=11+2p | | x3+27=0 | | 2x2+3x–5=0 | | x+2(3x+8-1)=14 | | 2(x+2)+3=-1 | | 1/3p+14=26 | | 5m-2m-4=-(2m+15) | | 2/3-1/6x=0 | | (2x+1)/5=1 | | x-7.4=-4.4 | | x-8.4=-6.1 | | 4(x)-10=180 | | 7x-4=(1/2)6x-6+38 | | 7k+14=5k+20 | | 41+3p+4=8p | | 4x-2(×-2)=-9+5×-8 | | r+(r+16)=2r+16=62 | | 6x-22=8x+34=180 | | 4x-15=95 | | 2−21​ n=3n+16; | | 3w-2w+5w=18 | | -2d-14d=16 | | 27x-30=51/7x | | -2=5u+3(u+6) | | 7z+6z+2z-3z+z=7 | | 8w-2w+2w-5w=15 | | 3h-2h+2h=18 | | 6u-u—-11u+-2u=-14 | | 16s-11s+s+2s-6s=6 | | 8h+-11h+-12h=-15 | | 7m+3m-4m+m=14 |

Equations solver categories