5(2k-3)-3(k+4)/3k+2k=-2

Simple and best practice solution for 5(2k-3)-3(k+4)/3k+2k=-2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5(2k-3)-3(k+4)/3k+2k=-2 equation:



5(2k-3)-3(k+4)/3k+2k=-2
We move all terms to the left:
5(2k-3)-3(k+4)/3k+2k-(-2)=0
Domain of the equation: 3k!=0
k!=0/3
k!=0
k∈R
We add all the numbers together, and all the variables
2k+5(2k-3)-3(k+4)/3k+2=0
We multiply parentheses
2k+10k-3(k+4)/3k-15+2=0
We multiply all the terms by the denominator
2k*3k+10k*3k-3(k+4)-15*3k+2*3k=0
We multiply parentheses
2k*3k+10k*3k-3k-15*3k+2*3k-12=0
Wy multiply elements
6k^2+30k^2-3k-45k+6k-12=0
We add all the numbers together, and all the variables
36k^2-42k-12=0
a = 36; b = -42; c = -12;
Δ = b2-4ac
Δ = -422-4·36·(-12)
Δ = 3492
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{3492}=\sqrt{36*97}=\sqrt{36}*\sqrt{97}=6\sqrt{97}$
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-42)-6\sqrt{97}}{2*36}=\frac{42-6\sqrt{97}}{72} $
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-42)+6\sqrt{97}}{2*36}=\frac{42+6\sqrt{97}}{72} $

See similar equations:

| 9x(4x+7)=0 | | 7x-2= 3(x+5) | | a-2=3+6a/3 | | 10=10n+5 | | X3-x2-9x+11=0 | | X^3-x^2-9x+11=0 | | 14/3x=0 | | 2^x2-9x2^2+8=0 | | x+11=x-25 | | x^-2-x^-1+12=0 | | 4x+9-3x=6 | | 8^(-2y)=6 | | 3x×(x-25)=500 | | (x-7)^2=64 | | +4(2z+3)=15 | | 1-2+(x+)=8 | | z+4(22+3)=15 | | 4g+4(-4+-3g)=1-g | | D-43=x | | 5c-13=12;2 | | 6x+7/3x+2=4x+13/2x+5 | | x²+x-1=0 | | x²-6x+9=50 | | 16=n/2+4 | | x(2x+3)-2x(x-5)=6 | | 10-3x=10+2x | | -3x-2=12 | | n/14=6/42n= | | -2(2x-3)-4=2x-6 | | |3x-3|=6 | | 2x3-7x-15=0 | | 29(c-50)=19,000 |

Equations solver categories