If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9x(4x+7)=0
We multiply parentheses
36x^2+63x=0
a = 36; b = 63; c = 0;
Δ = b2-4ac
Δ = 632-4·36·0
Δ = 3969
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3969}=63$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(63)-63}{2*36}=\frac{-126}{72} =-1+3/4 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(63)+63}{2*36}=\frac{0}{72} =0 $
| 7x-2= 3(x+5) | | a-2=3+6a/3 | | 10=10n+5 | | X3-x2-9x+11=0 | | X^3-x^2-9x+11=0 | | 14/3x=0 | | 2^x2-9x2^2+8=0 | | x+11=x-25 | | x^-2-x^-1+12=0 | | 4x+9-3x=6 | | 8^(-2y)=6 | | 3x×(x-25)=500 | | (x-7)^2=64 | | +4(2z+3)=15 | | 1-2+(x+)=8 | | z+4(22+3)=15 | | 4g+4(-4+-3g)=1-g | | D-43=x | | 5c-13=12;2 | | 6x+7/3x+2=4x+13/2x+5 | | x²+x-1=0 | | x²-6x+9=50 | | 16=n/2+4 | | x(2x+3)-2x(x-5)=6 | | 10-3x=10+2x | | -3x-2=12 | | n/14=6/42n= | | -2(2x-3)-4=2x-6 | | |3x-3|=6 | | 2x3-7x-15=0 | | 29(c-50)=19,000 | | 30+5b=b=4 |