If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5(-6.1+4.8x)=-(3/2)(-16x+20)
We move all terms to the left:
5(-6.1+4.8x)-(-(3/2)(-16x+20))=0
Domain of the equation: 2)(-16x+20))!=0We add all the numbers together, and all the variables
x∈R
5(4.8x-6.1)-(-(+3/2)(-16x+20))=0
We multiply parentheses
20x-(-(+3/2)(-16x+20))-30.5=0
We multiply parentheses ..
-(-(-48x^2+3/2*20))+20x-30.5=0
We multiply all the terms by the denominator
-(-(-48x^2+3+20x*2*20))-(30.5)*2*20))=0
We calculate terms in parentheses: -(-(-48x^2+3+20x*2*20)), so:We add all the numbers together, and all the variables
-(-48x^2+3+20x*2*20)
We get rid of parentheses
48x^2-20x*2*20-3
Wy multiply elements
48x^2-800x*2-3
Wy multiply elements
48x^2-1600x-3
Back to the equation:
-(48x^2-1600x-3)
-(48x^2-1600x-3)=0
We get rid of parentheses
-48x^2+1600x+3=0
a = -48; b = 1600; c = +3;
Δ = b2-4ac
Δ = 16002-4·(-48)·3
Δ = 2560576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2560576}=\sqrt{64*40009}=\sqrt{64}*\sqrt{40009}=8\sqrt{40009}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1600)-8\sqrt{40009}}{2*-48}=\frac{-1600-8\sqrt{40009}}{-96} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1600)+8\sqrt{40009}}{2*-48}=\frac{-1600+8\sqrt{40009}}{-96} $
| -2.3f=18.4 | | 10x-4=45x+3 | | n(n-1)/2=231 | | -m-7/8=-5 | | 4(x-2)+1=2(x+5) | | 3(2x+4)=19-x | | 27+5x-9=3x | | Y=110+0.25x | | Y=150-0.25x | | -3+r/10=1 | | (X-11)+y=99 | | C-11+y=99 | | C-11+y=98 | | 8x+40+-7x=55 | | X3-7X2+8x-11=0 | | 22=8x=2x+9 | | Y=110-0.5x | | 22t2+25t=0 | | (2+5x)-(6x-9)=10 | | 0=3+22.5x-4.9x^2 | | 0=3+22.5x-49x^2 | | (2x-1)=(3x-17) | | 8x+31=9 | | 14=-3x+27 | | 12m+20=17 | | 13+2f=21 | | (c-45)=40 | | 18a+12=14a+16 | | 1(k)=550 | | (6x+18)+30+90=180 | | (2x+1)+106+31=180 | | -3(y-6)=6y-18 |