If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4z^2+7z+3=0
a = 4; b = 7; c = +3;
Δ = b2-4ac
Δ = 72-4·4·3
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1}=1$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-1}{2*4}=\frac{-8}{8} =-1 $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+1}{2*4}=\frac{-6}{8} =-3/4 $
| 2t+7+t-4=90 | | P=-25n+400 | | 2x+9=10x-7 | | −5|3+4k|=115 | | 7b-8=6b+7 | | 6(x+3x)=72 | | 6b+7+7b-8=180 | | 2=q−893 | | 7w+26=96 | | 2(g-86)=2 | | 6b+7=7b-8 | | 2(g−86)=2 | | 7(z-90)=28 | | 8(x—5)=7(x+5) | | ∣5y−3∣=28 | | -2(4x=3)+6=2(2x-3)-10x | | 28=7(z−90) | | 7=3u−5 | | 15+4m=103 | | 4q-6+78=90 | | 4q-6+78=180 | | 6+1/2b=5/6b | | 4q-6+78+90=180 | | 8p+-5=83 | | 2^3=18x | | 49=∣7c∣ | | 7r2+6r−2=0 | | 2.5(x+5)=7.5x-0.5 | | 8p+–5=83 | | x-(x/5)=234 | | 5d2+8d+1=0 | | -9|n-7|=-18 |