If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4y^2+5y-6=0
a = 4; b = 5; c = -6;
Δ = b2-4ac
Δ = 52-4·4·(-6)
Δ = 121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{121}=11$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-11}{2*4}=\frac{-16}{8} =-2 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+11}{2*4}=\frac{6}{8} =3/4 $
| -5g=16.5 | | x2+9x+8=0 | | 7(n+3)=34+6n | | 2(2a+1/2=3(a-2/3) | | 24.3049x-3x^2-48=0 | | 12-3x=30x+6 | | 3.4+1.2(-0.2x-1)=12x-10x | | 3(x-7)=128+3x | | 5/14+2/7x=1.5/42 | | 21c^2-16c-6=1-2c | | 9z^2+14=8z-1 | | r=3,6,7,9 | | 6x+5+10x+5+70=180 | | 8x+19-7x+10=-2 | | -3(x-18)=-12 | | 5x=6*5 | | 112+-5x=47 | | 180=7x-(x+20) | | 3=-4/3x-3 | | 11x+17x-8+2=-6x+2-8 | | 2÷5x=4 | | 10x=6*5 | | 9+2{4x-3}=19 | | n=162n-6= | | 4(2+3x)+2=2(2x+3) | | 6x(x+2)^2=0 | | 6(3+v)+34v=15v | | 44=2(x+7)+2(4x) | | 12=3x^2+9x | | (2x-3)3=(x-2)2 | | 5x^2-2=18 | | 43t=53(t-2) |