If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4y^2+16y=0
a = 4; b = 16; c = 0;
Δ = b2-4ac
Δ = 162-4·4·0
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{256}=16$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-16}{2*4}=\frac{-32}{8} =-4 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+16}{2*4}=\frac{0}{8} =0 $
| 1/3x+3=1/2x | | 108=-12n-4(-5n=7) | | -7/5w+7/3=-w-4/5 | | 15(1/3b=3)6(b+9) | | 14=2-(6d) | | 7/3v-7/3=-7/5v-4 | | x+23+124=180 | | 67=-6w–5 | | x/16=1/64 | | x^2+14+49=4 | | 100=45+15+4x | | 0.05x-0.08=0.97 | | 9r+8+2=10 | | 1/64=x/16 | | 2x-9+7x=27 | | 3x^2-3x=-2x+10 | | -2.3=u/5+10.2 | | -11=b-6-8 | | 1/4k+3/4=11/12 | | 13+6a=1 | | -7y^2(8y^2+8y-6)= | | 2x=154+6 | | 34=3v-11 | | -8=8n-10n | | 2x+11+3x=180 | | 12+x/12=11.75 | | (2x+11)+3x=180 | | 5p2+p=0 | | 5-6p-5=12 | | -6+3u=-24 | | 11=-3b-8b | | (7x+6)/4=(2x-3)/5 |