If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5p^2+p=0
a = 5; b = 1; c = 0;
Δ = b2-4ac
Δ = 12-4·5·0
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1}=1$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-1}{2*5}=\frac{-2}{10} =-1/5 $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+1}{2*5}=\frac{0}{10} =0 $
| 5-6p-5=12 | | -6+3u=-24 | | 11=-3b-8b | | (7x+6)/4=(2x-3)/5 | | 3z(3z+20-21)=0 | | 4x+1=1.3x+10 | | 45x+49=180 | | 21q-11=24 | | 9(x+2.2)=89.1 | | 16x+8=15x+17 | | (6x+7)/3=(9x+)/7 | | 5+x/12=4.75 | | 4(2-x+1=2x+2-5(1-4x) | | 5+x/12=4.25 | | 12x+2x+1=59 | | 61.43=21.75+b+-13.62 | | -12=2.9x | | 99=-9k | | -5/2y-3=1/3y-7/2 | | 3.2w=6.4 | | 4m+13=28 | | x/5+12=13.6 | | 3.2x-2=19 | | 7(m+3.1)=75.6 | | 1.75x=x+10.5 | | 11.1+v/6=-8.1 | | -2k-16=4k | | 2/5(5x+5x)=-6 | | 4(7x-5)=6(4x+2- | | 4(7x-5)=6(4x+2) | | -16=4.3x-8 | | 8x16=32 |