If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2-90=0
a = 4; b = 0; c = -90;
Δ = b2-4ac
Δ = 02-4·4·(-90)
Δ = 1440
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1440}=\sqrt{144*10}=\sqrt{144}*\sqrt{10}=12\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{10}}{2*4}=\frac{0-12\sqrt{10}}{8} =-\frac{12\sqrt{10}}{8} =-\frac{3\sqrt{10}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{10}}{2*4}=\frac{0+12\sqrt{10}}{8} =\frac{12\sqrt{10}}{8} =\frac{3\sqrt{10}}{2} $
| x+39=26 | | 0.333b+5=1.5b+0.333 | | v+2-3(-4v-1)=3(v-3) | | 10x+4=68 | | 3c+6=-9-2c | | x/4+6=x/2+3 | | 6•x=42 | | -4w+2(w+5)=4 | | 9-7(x+1)=2+5x | | 3(x+2)-4x=-2x+10-4 | | 25x+10(x+20)=550 | | -1/2+n=-8.5 | | 11,009=46x+23,552 | | -3h-8=7 | | -6(y-4)=-4y+10 | | 2(v+8)=-2(6v-5)+2v | | 50=(12+s) | | 3|2x+6|=12 | | 2x+45=59 | | 11,009=46x+33,552 | | 6x+-5=4x+7 | | 4x^2+5=-44 | | 4x+12-4=8(0.5x+1) | | 0.83333333=0.33333333+d | | 50=5(12=s) | | 10x-27+2x=3(4x-9) | | 2x+5=5(-7)-3x | | 2x +10=4 | | -9(t-6)-20=25 | | 8=-8y+4(y+6) | | y-12=6(13)-8=180 | | x+15+4x-12=x+15+4x-12 |