If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2-8x-21=0
a = 4; b = -8; c = -21;
Δ = b2-4ac
Δ = -82-4·4·(-21)
Δ = 400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{400}=20$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-20}{2*4}=\frac{-12}{8} =-1+1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+20}{2*4}=\frac{28}{8} =3+1/2 $
| 7(4w+10)=35 | | 5w=2w-6 | | 5r-7=2r+5 | | 6z-21=z+19 | | 9x3^=1 | | 9/(x+3)=4 | | 9x3x=1 | | 1m=+0.35m | | 5q-8=q+12 | | -5x2=-35 | | 4x-17x=15 | | 1m=+0.35 | | 2(y+1)=3(y-2) | | x2-20=5 | | x2–20=5 | | 15x6=45 | | 7/(x-3)=6 | | 4(x+2)=2(2x-2)-(x-3) | | -5(x-25)=50 | | 4(x+2)=2(2x-2)–(x-3) | | 2(n-6)=16 | | 1/(x-7)=4 | | 2y+29=11 | | 12=1x1= | | a/3-15=15 | | 1/(x+4)=6 | | 8x-9=51 | | X²+5x=-80. | | 3b–15=0 | | x12−1=−6 | | 5(2y+1)=42 | | 11x3=91 |