If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2-4x=1
We move all terms to the left:
4x^2-4x-(1)=0
a = 4; b = -4; c = -1;
Δ = b2-4ac
Δ = -42-4·4·(-1)
Δ = 32
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{32}=\sqrt{16*2}=\sqrt{16}*\sqrt{2}=4\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-4\sqrt{2}}{2*4}=\frac{4-4\sqrt{2}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+4\sqrt{2}}{2*4}=\frac{4+4\sqrt{2}}{8} $
| 8+s=25 | | 1=3(g+7)+-5 | | 70/100=y/20 | | x/5=2/16 | | 3.69=0.3t | | 13=-10+k | | -42=-3/6x | | 2n-4-(3-n)=11 | | 3)13=-10+k | | 1/2(x+6)=30.X=50 | | 70/100=y/30 | | 4(x+3)^(2/5)-4=140 | | F(x)=25x^2,x0 | | 185x=+11 | | 343=49x+5 | | -2=-2(z-8) | | 18-6x+12=-10(9x-4) | | 7m+32=12—m | | 7u-85=7u-29 | | 4x+8=3(2x+4) | | 9+2g=-1 | | 4u-51=5u-65 | | 4x^2+288=0 | | 19.5m=24 | | 65.96+0.11x=59.96+0.15x | | (2)23-2x=64-10x | | 3a-96=a | | 1/2(4x+12)=8x | | X=3x+101 | | V+51=5v+3 | | 5x—15=180 | | 3(2x-3)=3x+21 |