If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2-4x-1=0
a = 4; b = -4; c = -1;
Δ = b2-4ac
Δ = -42-4·4·(-1)
Δ = 32
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{32}=\sqrt{16*2}=\sqrt{16}*\sqrt{2}=4\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-4\sqrt{2}}{2*4}=\frac{4-4\sqrt{2}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+4\sqrt{2}}{2*4}=\frac{4+4\sqrt{2}}{8} $
| x+1/2x-x-1/4=x+7/4 | | 5-(6k-19)=18 | | 2(10x-2x+7)=3(2x+13) | | 4x-4=36x+44 | | 3x−7=4x | | 2(10x-2x+7)=3(2x+13 | | 16x-x^-2=0 | | 5-(6k-19)=19 | | 1-3q=2q+41 | | X+7+x+11=18 | | 2(3+x)+2x=5 | | 6x+5-2x=21 | | 35/6+4/7p=45/18 | | 4x-(1/x)=3 | | 8x+4+2x=-44 | | 9x+1=-2 | | 5(1y+2)=1/2(10y+20) | | 3(2x+4)+2(4x+9)=7(5-4x)-4(2×-5) | | (6+2x)-(-2x)=5 | | X-1+2x+1=9 | | 4x2-4x-1=2 | | 17x+43x=180 | | -3/5x-6=5+5/10x | | 10=6x+40 | | 7=(-5+2m) | | 3/4(x)-2/5=20 | | -6(x+1)-13=24+5 | | 1/3x−5=12 | | 6y2–5y–6=0 | | 13x−5=12 | | p/3+51=37 | | 4+8(6x-6)=-332 |