If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2-36x=0
a = 4; b = -36; c = 0;
Δ = b2-4ac
Δ = -362-4·4·0
Δ = 1296
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1296}=36$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-36)-36}{2*4}=\frac{0}{8} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-36)+36}{2*4}=\frac{72}{8} =9 $
| 4/36=w/9 | | (3x-5)+(2x-7)+(x+2)=50 | | 5(g+2)=2g+3(g-5) | | 11w-9=7w-30 | | 5(2x+4)=2(3x+7) | | 6x+7-3x-8=2x+7 | | 7^-4x=2^1+3x | | 4a-10=2a+14 | | 5b+7=3b+15 | | 15/x+1=5 | | x+20x/100+18/100*20x/100=1236 | | 8x-116=35x-10 | | 10a-1-7a+3=7a-10 | | -3x-1=16 | | x+61=2x−3 | | 0=100+36q+-4q2 | | 7(u-2)-9=-7(-3u+3)-4u | | 5x+4-6x=2(5+x) | | X^2-69x+540=0 | | (5-u)(4u+7)=0 | | 3(2x-4)=2(5x-20) | | 3x+2x+8=5x+8 | | 1x+14=2x+7 | | x+14=2x+7 | | 10b^{5b}=10000 | | 4x+2(x-3)+1=11 | | 4^(2x-3)=9^(x=3) | | (5-x)=31 | | 5+y^2=21 | | |5-x|=31 | | -4(x+6)-44=1-49 | | y-2/5=-7/15 |