If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2-16x-10=0
a = 4; b = -16; c = -10;
Δ = b2-4ac
Δ = -162-4·4·(-10)
Δ = 416
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{416}=\sqrt{16*26}=\sqrt{16}*\sqrt{26}=4\sqrt{26}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-4\sqrt{26}}{2*4}=\frac{16-4\sqrt{26}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+4\sqrt{26}}{2*4}=\frac{16+4\sqrt{26}}{8} $
| (2x+8)=(3x+16)+(8x−18 | | 2(r-6)=3r | | 70x+50x=12 | | 36+9+x=180 | | (2x+8)=(3x+16)+(8x−18) | | 4n-7n-65=0 | | 2u+20=-3u-5 | | 4n^2-7n-65=0 | | (a+10)(a+8)=63 | | 4(7-3y)=2(9y+5)+15 | | -9(x+9)+3=-78 | | 2.1=x/4 | | 0.5x+0.15(30)=45.5 | | 2z=z+22= | | w(w+5)(w+29)=33488 | | 3-0/9k=3 | | 10x2+8x=0 | | 12/y=28/21 | | (w+5)(w+29)=33488 | | E^(4x)=25E | | 3x−5+2x2+9x=3x+2x2+9x−5 | | 2x+12+112=180 | | 3z=z+54= | | C+16x-36=0 | | 3x−5+2x^2+9x=3x+2x^2+9x−5 | | C=2x(3.14)x(4) | | (4/5)x+(2/5)=-(6/5) | | x+6=−15 | | 3z=3+54= | | 52x+2+74x=180 | | (1/3)(3x-1)=-(1/7)-(5/7) | | 4s=s+57= |