If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2-16-168=0
We add all the numbers together, and all the variables
4x^2-184=0
a = 4; b = 0; c = -184;
Δ = b2-4ac
Δ = 02-4·4·(-184)
Δ = 2944
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2944}=\sqrt{64*46}=\sqrt{64}*\sqrt{46}=8\sqrt{46}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{46}}{2*4}=\frac{0-8\sqrt{46}}{8} =-\frac{8\sqrt{46}}{8} =-\sqrt{46} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{46}}{2*4}=\frac{0+8\sqrt{46}}{8} =\frac{8\sqrt{46}}{8} =\sqrt{46} $
| 2025=3481+x | | 2.50x+350=3.00+225 | | 25/x=1/40 | | y=8000(0.94)^10 | | 3x-21/x+13=9/8 | | 3x+12=x=28 | | (x^2+11x+25)/(x+7)=0 | | 12/x-3=4 | | (3x+30)(x+70)(6x-30)(2x+50)=180 | | -0.6(r+0.2)P=1.8 | | 4x^2+3x=-10 | | (25+2x)(-9x+72)=0 | | 4x-(8-x)=x+14 | | 28-6x=70+x | | 9+(−2n)n=4 | | t+3.5=5 | | (x)=12x+8 | | −29(6x−12)=49 | | l+4l=l-4l | | -1=k*3 | | 0.40=0.0021x^2-0.286x+16.28 | | -1=k(3) | | |3x+9|=|4x+4| | | .40=0.0021x^2-0.286x+15.88 | | M=m-2 | | 5q-4+7q+9=180 | | 2s=2(8) | | 64+p=124 | | q5+q5+q5= | | 2x+5÷x=11 | | 1.0=0.25^x | | 6x^2=36x−150 |