If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+56x-540=0
a = 4; b = 56; c = -540;
Δ = b2-4ac
Δ = 562-4·4·(-540)
Δ = 11776
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{11776}=\sqrt{256*46}=\sqrt{256}*\sqrt{46}=16\sqrt{46}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(56)-16\sqrt{46}}{2*4}=\frac{-56-16\sqrt{46}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(56)+16\sqrt{46}}{2*4}=\frac{-56+16\sqrt{46}}{8} $
| 5x+10=1/2(245-x) | | 5p=240 | | 0.104(3x)+0.122x=500 | | 9y-3=(5+9y)-8 | | -3(5x+4)=-147 | | 8^x-2=64 | | 7x-3=3x-8 | | 7+a/8=13 | | -5x+6=8x-18 | | 9x+8=2-3x+3 | | c/2+5=11 | | y=150/1.0894 | | 6x+2-2x=2+4x | | p^2=-10p | | -8(n-2)=-2(n-5)+6 | | 2x+3=4-6x | | (2n+12)=90 | | 12+3y−8−7y=0 | | -4=-7+3u | | 2x=3=4-6x | | 6+.50t=8+.25t | | (2n+12)=180 | | 10^x=3.3 | | -6(4-x)=-72 | | -6+v/2=2 | | (2x+8)=1/2(5x-4) | | 7+3x5=-15 | | -x-4=2x-7 | | 8k=7k+10 | | 10z=135 | | ⅔+3t/4=31/6 | | 3x-5=2x+1+x |