If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+4x=15
We move all terms to the left:
4x^2+4x-(15)=0
a = 4; b = 4; c = -15;
Δ = b2-4ac
Δ = 42-4·4·(-15)
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{256}=16$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-16}{2*4}=\frac{-20}{8} =-2+1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+16}{2*4}=\frac{12}{8} =1+1/2 $
| 26=-2/3+4(3-x) | | 10x-2(3x-5=6 | | b2-8b-48=0 | | X^2-3x+9=9 | | 2(z+5)=15 | | 5+10=10y | | 78-2x=x+63 | | 2w-6-5w=-3w-9 | | 8-2x=x+63 | | -6y-6=2-6y-8 | | 4x+5-3x=16 | | 6y+6-9=4y-4+2y | | -4w-16=3w+12+7 | | 3x-3=7x-91 | | 3n^2+12n-4=0 | | 10/7n=170 | | 24y+4(45)-6y=180 | | n2-7n=5 | | 4y+4-7=3y-3+y | | Y=5/3x+15 | | 4w-4+7=10w-3 | | 64−(3y+8y+y)÷40=37 | | -3u-3+7u=4u+4-5 | | 4x+4+x=5x-5+9 | | 9q+10=20. | | 2f2+7f-15=0 | | 0=-x^2+50x+5000 | | (2x+7x)/5=27 | | -25+3x=-(1+4x)-x | | 15(15)x=1350 | | 100=7.4x+20.5 | | 21x2+5x-7=0 |