If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+40x+84=0
a = 4; b = 40; c = +84;
Δ = b2-4ac
Δ = 402-4·4·84
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{256}=16$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40)-16}{2*4}=\frac{-56}{8} =-7 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40)+16}{2*4}=\frac{-24}{8} =-3 $
| 4x+7-6x=5-5-4x+4 | | 36+2x=500 | | -5(w-4)=-9w-20 | | 6.1a+11=59.8 | | 4=x+-7 | | -5(w-4)=-9-20 | | 4z/10+9=0 | | |4x-6|=18 | | 6x2-6x-72=0 | | p/9=83 | | x/9+1=6 | | 52-(2c+4)=(c+5)+5 | | 8x^2–14x+3=0 | | 5(3+x)+2=4x+18 | | 2(p-3)=34 | | -8y+4=-4(y+4) | | 65=-3x | | 6y+24=4(y-1) | | 15=3x+36 | | 6(y+2)=-5y-32 | | 35x-40=40x+70 | | B=7/2(j-63) | | 250=0.50x | | -13x-11=12x+28 | | 3(2u+8=60 | | (x+10)=2(4x+35) | | x/5=9=-2 | | 6(3y+3)=-28 | | 35500*x=10 | | X=0y-3 | | x2−16x+12=0 | | x-1/9=1/6 |