If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+30x-62=0
a = 4; b = 30; c = -62;
Δ = b2-4ac
Δ = 302-4·4·(-62)
Δ = 1892
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1892}=\sqrt{4*473}=\sqrt{4}*\sqrt{473}=2\sqrt{473}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(30)-2\sqrt{473}}{2*4}=\frac{-30-2\sqrt{473}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(30)+2\sqrt{473}}{2*4}=\frac{-30+2\sqrt{473}}{8} $
| k/4-10=-11 | | 9.78=-8x-6.32+3.3 | | 3/4=3/8x-3/2= | | 10x=4x/2+6 | | r+12=22 | | x=3x5x6 | | 4+7u=8u | | 8k=-9+7k | | x-15/5=-4 | | 9/x+6=6 | | 10x=(4x)/2+6 | | 216=134-x | | (15/8)=(45/16)x | | 66=5d+6 | | x-9/10=7x+1/6 | | 8+2(3x-5)=4-3(x+1) | | 4+.2x=3(4-2x) | | 6c-4=8c-8 | | 10x=(4x)/2+5 | | 79=3+4n | | 20=20x+60 | | 10.2+12.4x-8=-22.6 | | 10x=(4x)/2 | | -4x(x-6)-6=-30 | | x-14=3x-8 | | 9−2r=14 | | |x-9|+2=4 | | .8x=-4 | | 4.5−y=2(y+2.25)+6.6 | | 10x=5x/2 | | (9x+10)°=(15x-2)° | | -6-4(-2x+11)=66 |