If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+20x-20=0
a = 4; b = 20; c = -20;
Δ = b2-4ac
Δ = 202-4·4·(-20)
Δ = 720
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{720}=\sqrt{144*5}=\sqrt{144}*\sqrt{5}=12\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-12\sqrt{5}}{2*4}=\frac{-20-12\sqrt{5}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+12\sqrt{5}}{2*4}=\frac{-20+12\sqrt{5}}{8} $
| 8-4m=-11 | | 180=7p+44 | | 50=7p+44 | | 6+3x-2x=-46 | | 70°=2x+10° | | 0.4^x=11 | | 2x^2=5x(x-7)+4 | | x/11+9=10+4/11 | | -4(9+7y)-6y=8 | | x/11+9=10,4/11 | | x^2/2-3x=8 | | 4h=–6+10h | | 6x+6=51 | | 6k=–8+5k | | 16t2+18t+5=0 | | 3x^2=2(x-7) | | (6x+19)+(3x+8)=180 | | 9-g3;g=5 | | 1/4(x+6)=-3 | | y-3.4(2)=-2 | | 3(k-9)=k+5 | | 39+66+x=180 | | 11-21/2x=x+46 | | 3x-4=x+15 | | 5x^2–20x+18=0 | | (3,5x)-X-250=-X+250 | | 105/9.15=255/x | | -4x-23=-11 | | 4(1+2m)+9=13+8m | | x2-247,5x=1125 | | 23x(3+2)=5x | | 37x89=3293 |